Confronting Higgcision with EDMs

Jae Sik Lee

Chonnam National University, Gwangju
27-31 October, 2014 @ KIAS
The 4 th KIAS Workshop on Particle Physics and Cosmology

* based on K. Cheung, JSL, E. Senaha, P.-Y. Tseng, JHEP 1406 (2014) 149 [arXiv:1403.4775]
© Preliminary
- If the Higgs boson is a CP-mixed state, it couples to the fermions as follows:

$$
\begin{aligned}
\mathcal{L}_{H \bar{f} f} & =-g_{f} H \bar{f}\left(g_{H \bar{f} f}^{S}+i g_{H \bar{f} f}^{P} \gamma_{5}\right) f, \\
\mathcal{L}_{H V V} & =g M_{W} g_{H V V}\left(W_{\mu}^{+} W^{-\mu}+\frac{1}{2 \cos ^{2} \theta_{W}} Z_{\mu} Z^{\mu}\right) H
\end{aligned}
$$

where $g_{f}=g m_{f} / 2 M_{W}=m_{f} / v$ with $f=u, d, l$ denoting the up- and downtype quarks and charged leptons collectively.

- Then, the non-vanishing values of the products

$$
g_{H \bar{f} f}^{S} \times g_{H \bar{f}^{(\prime)} f^{(\prime)}}^{P} \quad \text { and } \quad g_{H V V} \times g_{H \bar{f} f}^{P}
$$

signal CP violation and give rise to nonzero values for electric dipole moments (EDMs)
4. Preliminary

- The LHC Higgs data constrain the Higgs couplings to the third-generation quarks and leptons
- On the other hand, the EDM experiments mainly involve the first-generation fermions

Our aim is to study the implication of the Higgs data (Higgcision) on EDMs
in the framework of two-Higgs-doublet models (2HDMs)

A Contents

- Higgcision
- EDMs
- Results
- Summary

4. Higgcision

- Higgcision: Higgs Precision Cheung, JSL, Tseng
- "Higgcision Era begins" JHEP 1305 (2013) 134 [arXiv:1302.3794]
- "Higgcision in the 2HDMs" JHEP 1401 (2014) 085 [arXiv:1310.3937]
- "Higgcision Updates 2014" to appear in PRD [arXiv:1407.8236]
- "Higgcision in ..." in preparation
- The constraints on the Higgs couplings from the Higgs data:

$$
C_{u}^{S} \equiv g_{H \bar{t} t}^{S} ; \quad C_{u}^{P} \equiv g_{H \bar{t} t}^{P} ; \quad C_{v} \equiv g_{H V V}
$$

- Higgcision

- Relations among the Higgs couplings to fermions (2HDMs): generation independent \& no tree-level FCNC

2HDM I	$C_{d}^{S}=C_{u}^{S}$	$C_{l}^{S}=C_{u}^{S}$	$C_{d}^{P}=-C_{u}^{P}$	$C_{l}^{P}=-C_{u}^{P}$
2HDM II	$C_{d}^{S}=\frac{O_{\phi_{1} i}}{c_{\beta}}$	$C_{l}^{S}=\frac{O_{\phi_{1} i}}{c_{\beta}}$	$C_{d}^{P}=t_{\beta}^{2} C_{u}^{P}$	$C_{l}^{P}=t_{\beta}^{2} C_{u}^{P}$
2HDM III	$C_{d}^{S}=C_{u}^{S}$	$C_{l}^{S}=\frac{O_{\phi_{1} i}}{c_{\beta}}$	$C_{d}^{P}=-C_{u}^{P}$	$C_{l}^{P}=t_{\beta}^{2} C_{u}^{P}$
2HDM IV	$C_{d}^{S}=\frac{O_{\phi_{1} i}}{c_{\beta}}$	$C_{l}^{S}=C_{u}^{S}$	$C_{d}^{P}=t_{\beta}^{2} C_{u}^{P}$	$C_{l}^{P}=-C_{u}^{P}$

- $O_{\phi_{1} i}= \pm\left[1-\left(O_{\phi_{2} i}\right)^{2}-\left(O_{a i}\right)^{2}\right]^{1 / 2}$ with $O_{\phi_{2} i}=s_{\beta} C_{u}^{S}, \quad O_{a i}=-t_{\beta} C_{u}^{P}$
- $C_{v}=c_{\beta} O_{\phi_{1} i}+s_{\beta} O_{\phi_{2} i}$ with $s_{\beta}^{2}=\frac{\left(1-C_{v}^{2}\right)}{\left(1-C_{v}^{2}\right)+\left(C_{u}^{S}-C_{v}\right)^{2}+\left(C_{u}^{P}\right)^{2}}$

4. Higgcision

- Constraints from the Higgs data: Varying C_{u}^{S}, C_{u}^{P}, and C_{v}

JHEP 1401 (2014) 085 [arXiv:1310.3937], Cheung, JSL, Tseng ... a bit older data

© EDMs

- The " H " -mediated EDMs JHEP 0810 (2008) 049 [arXiv:0808.1819v6], Ellis, JSL, Pilaftsis

$$
\begin{aligned}
\mathcal{L}= & -\frac{i}{2} d_{f}^{E} F^{\mu \nu} \bar{f} \sigma_{\mu \nu} \gamma_{5} f-\frac{i}{2} d_{q}^{C} G^{a \mu \nu} \bar{q} \sigma_{\mu \nu} \gamma_{5} T^{a} q \\
& +\frac{1}{3} d^{G} f_{a b c} G_{\rho \mu}^{a} \widetilde{G}^{b \mu \nu} G_{\nu}^{c}{ }_{\nu}^{\rho}+\sum_{f, f^{\prime}} C_{f f^{\prime}}(\bar{f} f)\left(\bar{f}^{\prime} i \gamma_{5} f^{\prime}\right)
\end{aligned}
$$

- The major Higgs-mediated contribution to the particle EDMs $\left(d_{f}^{E}\right)$ and CEDMs $\left(d_{q}^{C}\right)$ comes from the two-loop Barr-Zee-type diagrams

$$
\left(d_{f}^{E}\right)^{H}=\left(d_{f}^{E}\right)^{\mathrm{BZ}} ; \quad\left(d_{q}^{C}\right)^{H}=\left(d_{q}^{C}\right)^{\mathrm{BZ}}
$$

- For the Weinberg operator, we consider the contributions from the Higgsmediated two-loop diagrams:

$$
\left(d^{G}\right)^{H}=\frac{4 \sqrt{2} G_{F} g_{s}^{3}}{(4 \pi)^{4}} \sum_{q=t, b} g_{H \bar{q} q}^{S} g_{H \bar{q} q}^{P} h\left(z_{H q}\right)
$$

- For the four-fermion operators, we consider the t-channel exchanges of the CP-mixed state H :

$$
\left(C_{f f^{\prime}}\right)^{H}=g_{f} g_{f^{\prime}} \frac{g_{H \bar{f} f}^{S} g_{H \bar{f}^{\prime} f^{\prime}}^{P}}{M_{H}^{2}}
$$

© EDMs

- The details of the two-loop Barr-Zee EDMs and CEDMs:

$$
\begin{aligned}
\left(d_{f}^{E}\right)^{\mathrm{BZ}}= & \left(d_{f}^{E}\right)^{\gamma H}+\left(d_{f}^{E}\right)^{Z H} \\
\left(d_{q_{l}}^{C}\right)^{\mathrm{BZ}}= & -\frac{g_{s} \alpha_{s} \alpha_{\mathrm{em}} m_{q_{l}}}{16 \pi^{2} s_{W}^{2} M_{W}^{2}} \sum_{q=t, b}\left[g_{H \bar{q}_{l} q_{l}}^{P} g_{H \bar{q} q}^{S} f\left(\tau_{q H}\right)+g_{H \bar{q}_{l} q_{l}}^{S} g_{H \bar{q} q}^{P} g\left(\tau_{q H}\right)\right] \\
\left(-Q_{f}\right)^{-1} \times\left(\frac{d_{f}^{E}}{e}\right)^{\gamma H}= & \sum_{q=t, b}\left\{\frac{3 \alpha_{\mathrm{em}}^{2} Q_{q}^{2} m_{f}}{8 \pi^{2} s_{W}^{2} M_{W}^{2}}\left[g_{H \bar{f} f}^{P} g_{H \bar{q} q}^{S} f\left(\tau_{q H}\right)+g_{H \bar{f} f}^{S} g_{H \bar{q} q}^{P} g\left(\tau_{q H}\right)\right]\right\} \\
& \quad+\frac{\alpha_{\mathrm{em}}^{2} m_{f}}{8 \pi^{2} s_{W}^{2} M_{W}^{2}}\left[g_{H \bar{f} f}^{P} g_{H \tau}^{S}{ }_{\tau^{-}}{ }^{\gamma} f\left(\tau_{\tau H}\right)+g_{H \bar{f} f}^{S} g_{H \tau^{+} \tau_{\tau}-}^{P} g\left(\tau_{\tau H}\right)\right] \\
& -\frac{\alpha_{\mathrm{em}}^{2} m_{f}}{32 \pi^{2} s_{W}^{2} M_{W}^{2}} g_{H \bar{f} f}^{P} g_{H V V} \mathcal{J}_{W}^{\gamma}\left(M_{H}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{d_{f}^{E}}{e}\right)^{Z H}=\frac{\alpha_{\mathrm{em}}^{2} v_{Z \bar{f} f}}{16 \sqrt{2} \pi^{2} c_{W}^{2} s_{W}^{4}} \frac{m_{f}}{M_{W}} \sum_{q=t, b} \frac{3 Q_{q} m_{q}}{\sqrt{2} M_{W}} \\
& \times\left[g_{H \bar{f} f}^{S}\left(v_{Z \bar{q} q} g_{H}^{P}{ }_{\bar{q} q}\right) \frac{m_{q}}{M_{H}^{2}} \int_{0}^{1} \mathrm{~d} x \frac{1}{x} J\left(r_{Z H}, \frac{r_{q H}}{x(1-x)}\right)\right. \\
& \left.+g_{H \bar{f} f}^{P}\left(v_{Z \bar{q} q} g_{H}^{S}{ }_{\bar{q} q}\right) \frac{m_{q}}{M_{H}^{2}} \int_{0}^{1} \mathrm{~d} x \frac{1-x}{x} J\left(r_{Z H}, \frac{r_{q H}}{x(1-x)}\right)\right] \\
& -\frac{\alpha_{\mathrm{em}}^{2} v_{Z \bar{f} f}}{16 \sqrt{2} \pi^{2} c_{W}^{2} s_{W}^{4}} \frac{m_{f}}{M_{W}} \frac{m_{\tau}}{\sqrt{2} M_{W}} \\
& \times\left[g_{H \bar{f} f}^{S}\left(v_{Z \tau^{+}+\tau^{-}} g_{H \tau^{+}+{ }_{\tau^{-}}}^{P}\right) \frac{m_{\tau}}{M_{H}^{2}} \int_{0}^{1} \mathrm{~d} x \frac{1}{x} J\left(r_{Z H}, \frac{r_{\tau H}}{x(1-x)}\right)\right. \\
& \left.+g_{H \bar{f} f}^{P}\left(v_{Z \tau^{+}+}{ }^{-} g_{H \tau^{+} \tau^{-}}^{S}\right) \frac{m_{\tau}}{M_{H}^{2}} \int_{0}^{1} \mathrm{~d} x \frac{1-x}{x} J\left(r_{Z H}, \frac{r_{\tau H}}{x(1-x)}\right)\right] \\
& +\frac{\alpha_{\mathrm{em}}^{2} v_{Z \bar{f} f}^{m_{f}}}{32 \pi^{2} s_{W}^{4} M_{W}^{2}} g_{H \bar{f} f}^{P} g_{H V V} \mathcal{J}_{W}^{Z}\left(M_{H}\right)
\end{aligned}
$$

with $v_{Z \bar{f} f}=T_{3 L}^{f} / 2-Q_{f} s_{W}^{2}$

© EDMs

- Observables EDMs: B. C. Regan, E. D. Commins, C. J. Schmidt and D. DeMille, Phys. Rev. Lett. 88 (2002) 071805; C. A. Baker et al., Phys. Rev. Lett. 97 (2006) 131801; W. C. Griffith, M. D. Swallows, T. H. Loftus, M. V. Romalis, B. R. Heckel and E. N. Fortson, Phys. Rev. Lett. 102 (2009) 101601; J. Baron et al. [ACME Collaboration], Science 343 (2014) 6168, 269

$$
\begin{aligned}
& \left|d_{\mathrm{Tl}}\right| \leq d_{\mathrm{Tl}}^{\mathrm{EXP}}, \quad\left|d_{\mathrm{n}}\right| \leq d_{\mathrm{n}}^{\mathrm{EXP}} \\
& \left|d_{\mathrm{Hg}}\right| \leq d_{\mathrm{Hg}}^{\mathrm{EXP}}, \quad\left|d_{\mathrm{ThO}} / \mathcal{F}_{\mathrm{ThO}}\right| \leq d_{\mathrm{ThO}}^{\mathrm{EXP}}
\end{aligned}
$$

with the current experimental bounds

$$
\begin{aligned}
& d_{\mathrm{Tl}}^{\mathrm{EXP}}=9 \times 10^{-25} e \mathrm{~cm}, \quad d_{\mathrm{n}}^{\mathrm{EXP}}=2.9 \times 10^{-26} e \mathrm{~cm} \\
& d_{\mathrm{Hg}}^{\mathrm{EXP}}=3.1 \times 10^{-29} e \mathrm{~cm}, \quad d_{\mathrm{ThO}}^{\mathrm{EXP}}=8.7 \times 10^{-29} e \mathrm{~cm}
\end{aligned}
$$

- In principle, the EDMs for Thallium, neutron, Mercury, and thorium monoxide can be calculated in terms of

$$
d_{f}^{E}, \quad d_{q}^{C}, \quad d^{G}, \quad C_{f f^{\prime}}
$$

- The theoretical calculation of EDMs requires expertise in various fields of Physics such as non-perturbaive QCD, Nuclear \& Atomic Physics and suffers from large uncertainties of the order of $\sim \mathcal{O}(10)$
- Constraints from d_{ThO} :

$$
\ldots C_{u}^{S}=C_{u}^{P}=1 / 2 \text { taken }
$$

- Constraints from d_{n} :

$$
\ldots C_{u}^{S}=C_{u}^{P}=1 / 2 \text { taken }
$$

A Results

- Constraints from d_{Hg} :

A Results

- Constraints combined with the 95% CL regions: " 1 EDM" (black): $\left|C_{u}^{P}\right| \leq$ 7×10^{-3} (I), 2×10^{-2} (II), 3×10^{-2} (III), 6×10^{-3} (IV)

Results

- Future prospects: $\left|d_{\mathrm{D}} / d_{\mathrm{D}}^{\mathrm{PRJ}}\right|$ vs $\left|d_{\mathrm{Ra}} / d_{\mathrm{Ra}}^{\mathrm{PRJ}}\right| d_{\mathrm{D}}^{\mathrm{PRJ}}=3 \times 10^{-27} e \mathrm{~cm}, d_{\mathrm{Ra}}^{\mathrm{PRJ}}=1 \times$ $10^{-27} e \mathrm{~cm}$

asummary
- The current LHC data on the observed 125.5 Higgs boson H give definite predictions for d_{e}^{E} and $d_{u, d}^{E, C}$ through the two-loop Barr-Zee diagrams in the framework of 2HDMs.
- The electron EDM d_{e}^{E}, for example, receives the dominant contributions from the top and W -boson loops to the $\gamma-\gamma-H$ Barr-Zee diagrams. A cancellation may occur between the two dominant contributions around $C_{v}=1$ in Types II and III.
- The Thallium and ThO EDMs are dominated by d_{e}^{E}, the neutron EDM by $d_{u, d}^{C}$ and d^{G}, and the Mercury EDM by $d_{u, d}^{C}$ through the Schiff moment. For the neutron EDM, we observe a cancellation occurs between the contributions from $d_{u, d}^{C}$ and d^{G} around $C_{v}=1$ in Types II and IV.
- The ThO (neutron) EDM constraint is relatively weaker in Types II and III (Types II and IV), while the Mercury EDM constraint is almost equally stringent in all four types.
- The coupling $\left|C_{u}^{P}\right|$ is restricted to be smaller than about 10^{-2} by the combined EDM constraints.
- Even for $\left|C_{u}^{P}\right| \lesssim 10^{-2}$, the deuteron and Radium EDMs can be ~ 10 times as large as the projected experimental sensitivities.

